Table of Contents

About This Publication ... 5

How to Use *Profiles in Science* .. 6
NSF-Funded High School Instructional Materials .. 7
BSCS and Professional Development ... 9
BSCS National Academy for Curriculum Leadership (NACL) .. 10
NACL Model for Curriculum Implementation ... 11
Characteristics of Reform-Oriented Instructional Materials .. 12

Earth Science

Earth System Science in the Community (EarthComm) ... 19
Exploring Earth ... 23

Life Science

BioComm: Biology in a Community Context ... 29
BSCS Biology: An Ecological Approach (Green Version) ... 33
BSCS Biology: A Human Approach .. 37
BSCS Biology: A Molecular Approach (Blue Version) .. 41
Insights in Biology ... 45

Physical Science

Active Chemistry ... 51
Active Physics ... 55
Active Physics CoreSelect ... 59
Active Physical Science ... 63
ChemDiscovery .. 67
Chemistry in the Community (ChemCom) ... 70
Comprehensive Conceptual Curriculum for Physics (C³P) ... 75
Introductory Physical Science (IPS) ... 80
Living by Chemistry ... 84
Integrated or Multidisciplinary Science

Astrobiology: An Integrated Science Approach ... 97
It’s About Time Integrated Science Curriculums: Coordinated Science for the 21st Century and
Integrated Coordinated Science for the 21st Century .. 101
Investigations in Environmental Science .. 106
BSCS Science: An Inquiry Approach ... 110
Ecology: A Systems Approach .. 114
Science and Sustainability (SEPUP) .. 117
Voyages Through Time .. 121

Under Development

Foundation Science .. 129
High School Environmental Science: Understanding Our Changing Earth 133
Investigating Astronomy .. 135
Science and Global Issues (SEPUP) .. 138
The BSCS Center for Professional Development compiled Profiles in Science—A Guide to NSF-Funded High School Instructional Materials, second edition, because we believe that the quality of instructional materials matters in the learning process for students and in the teaching process for teachers. As one of our colleagues so aptly expressed:

> Before implementing well-designed instructional materials, I thought my role as a teacher was to take the textbook ... and create a curriculum.

Now, I don’t want to be a curriculum writer. I want to teach—to do the art of teaching.

Profiles in Science, second edition, provides updated profiles on instructional materials designed to help high school science teachers in grades 9–12 focus on “the art of teaching” and student learning. The instructional materials described in this document were developed originally with funding from the National Science Foundation (NSF), and thus have undergone field testing and critical review during their development. The developers of these materials based their work on the National Science Education Standards (NRC, 1996) and Benchmarks for Science Literacy (AAAS, 1993); consequently, these materials are truly “standards based.” The profiles were derived from the instructional materials themselves and checked for accuracy by the developers and publishers of the materials. Profiles in Science includes only those materials designed to be semester-long or full-year programs; we did not include NSF-funded modules or units.

Within Profiles in Science, the instructional materials are organized by discipline—earth science, physical science, life science, and integrated science. There is also a section for materials that are currently under development.

The purpose of Profiles in Science is to help those involved in the review and selection of instructional materials for high-school science become familiar with high-quality, research-based instructional materials. This document is intended to be a source of general information about NSF-funded instructional materials; it is not a source of evaluative data or critical analysis of the materials. Each profile includes the following information:

- a brief overview of the primary goals and principles of the materials;
- a listing of the program’s content by module/unit and chapter;
- a description of the instructional approach;
- information about the alignment with national standards;
- a brief description of the various components offered, including kits and equipment suppliers;
- methods used for assessing student learning;
- information about professional development opportunities; and
- contact information for the developer and the publisher of the materials.

The information included in this document was as accurate as possible at the time of publication. Please contact the developer or publisher of the instructional materials for more detailed information and for examination copies of the instructional materials.

References

Profiles in Science is available on the BSCS website as a downloadable pdf file. You may download, at no cost, one or all of the profiles from the BSCS website: www.bscs.org/Profiles.
Why should I consider Profiles in Science?

- Are you interested in a standards-based approach to improving student learning in science?
- Are you looking for ways to incorporate research-based instructional strategies, such as science as inquiry, into your science classroom?
- Would you like to create a classroom environment that promotes learning in science for all students?
- Do you need to generate discussion about the process of curriculum selection and implementation in your school or district?

If you answered yes to any of these questions, then Profiles in Science can help you find just the right program to meet your needs.

First, Profiles in Science offers the initial information you need in one place, which will save you time in searching for developers and publishers of high-quality high school science programs.

Second, Profiles in Science allows you to compare programs before you invest the time and effort in ordering and reviewing the instructional materials.

Third, Profiles in Science serves as an excellent awareness tool for teachers, administrators, parents, and other stakeholders who might not be familiar with standards- and inquiry-based instructional materials.

How might I use Profiles in Science?

- Engage teachers and administrators in a dialogue about the important features of high-quality instructional materials.
- Increase the awareness of NSF-funded high school instructional materials in all science disciplines.
- Compare instructional materials within a specific science discipline.
- Look across science disciplines and consider materials that might complement each other when offered as part of a comprehensive high school science program.
- Generate interest in standards-based instructional materials among colleagues, parents, and the larger community.
- Provide a basis for comparing current high school instructional materials with NSF-funded materials.

However you choose to use Profiles in Science, we hope you find the information valuable as you seek to improve the learning and teaching of science. If you decide to contact developers and/or publishers of the instructional materials, please mention that you learned about the materials through Profiles in Science, from the BSCS Center for Professional Development.
<table>
<thead>
<tr>
<th>Science Discipline</th>
<th>Page</th>
<th>Instructional Materials</th>
<th>Grade Level</th>
<th>Developer (D)/Publisher (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Science</td>
<td>19</td>
<td>Earth System Science in the Community (EarthComm)</td>
<td>9–12</td>
<td>American Geological Institute (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Exploring Earth</td>
<td>9–12</td>
<td>TERC (D) McDougal Littell (P)</td>
</tr>
<tr>
<td>Life Science</td>
<td>29</td>
<td>BioComm: Biology in a Community Context</td>
<td>9–12</td>
<td>Clemson University (D) North Carolina State University (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>BSCS Biology: An Ecological Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>BSCS Biology: A Human Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>BSCS Biology: A Molecular Approach</td>
<td>High School</td>
<td>BSCS (D) Glencoe/McGraw-Hill (P)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Insights in Biology</td>
<td>9–10</td>
<td>EDC (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td>Physical Science</td>
<td>51</td>
<td>Active Chemistry</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>Active Physics (Modules)</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>Active Physics CoreSelect</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>Active Physical Science</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>ChemDiscovery</td>
<td>10–12</td>
<td>University of Northern Colorado (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Chemistry in the Community (ChemCom)</td>
<td>9–12</td>
<td>American Chemical Society (D) W.H. Freeman and Company (P)</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Comprehensive Conceptual Curriculum for Physics (C1P)</td>
<td>9–10</td>
<td>University of Dallas (D) University of Dallas (P)</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Introductory Physical Science (IPS)</td>
<td>8–9</td>
<td>Science Curriculum, Inc. (D) Science Curriculum, Inc. (P)</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>Living By Chemistry</td>
<td>10–12</td>
<td>University of California, Berkeley (D) Key Curriculum Press (P)</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>Minds•On Physics</td>
<td>11–12</td>
<td>University of Massachusetts (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>Physics That Works</td>
<td>11–12</td>
<td>TERC (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td>Science Discipline</td>
<td>Page</td>
<td>Instructional Materials</td>
<td>Grade Level</td>
<td>Developer (D)/ Publisher (P)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>---</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Integrated or Multidisciplinary Science</td>
<td>97</td>
<td>Astrobiology: An Integrated Science Approach</td>
<td>9–12</td>
<td>TERC and NASA (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>It’s About Time Integrated Science Curriculums: Coordinated Science for the 21st Century and Integrated Coordinated Science for the 21st Century</td>
<td>9–12</td>
<td>AGI/AAPT/AIP (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Investigations in Environmental Science</td>
<td>9–12</td>
<td>Northwestern University (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>BSCS Science: An Inquiry Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>Science and Sustainability (SEPUP)</td>
<td>9–12</td>
<td>SEPUP (D) University of California, Berkeley (D) Lab-Aids, Inc. (P)</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>Voyages Through Time</td>
<td>9–10</td>
<td>SETI Institute (D) Learning in Motion (P)</td>
</tr>
<tr>
<td>Under Development</td>
<td>129</td>
<td>Foundation Science</td>
<td>9–12</td>
<td>EDC (D)</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>High School Environmental Science: Understanding Our Changing Earth</td>
<td>9–12</td>
<td>AGI (D)</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>Investigating Astronomy</td>
<td>9–12</td>
<td>TERC (D)</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>Science and Global Issues (SEPUP)</td>
<td>10–12</td>
<td>SEPUP (D) University of California, Berkeley (D) Lab-Aids, Inc. (P)</td>
</tr>
</tbody>
</table>
In 2008, BSCS will celebrate its fiftieth year of providing leadership in science education. As one of several research-based curriculum studies created in 1958 by the National Science Foundation, BSCS became a leader in the development of innovative curricula that provide opportunities for students to learn science by doing science through inquiry.

Although BSCS has provided professional development for science teachers and other science educators throughout its 50-year history, the organization has recently expanded its mission to provide greater resources and services in professional development through the BSCS Center for Professional Development. BSCS believes, and research supports, that the sustained implementation of standards-based curriculum, especially those that engage students in scientific inquiry, can transform the learning and teaching of science. To be successful, however, curriculum implementation must be supported by high-quality, ongoing professional development.

The BSCS Center for Professional Development provides professional development opportunities that guide districts through a process of effective curriculum reform, from learning about science as inquiry in the classroom to analyzing instructional materials through the AIM process to building department-, school-, and district-wide professional learning communities. The mission of the BSCS Center for Professional Development is to provide learning opportunities for science teachers and other science educators that transform their thinking and practice resulting in more rigorous, inquiry-based learning opportunities for science students.

One of the hallmarks of the BSCS Center for Professional Development is the BSCS National Academy for Curriculum Leadership (NACL). Through the NACL, BSCS helps schools and school districts build leadership capacity to sustain the implementation of standards-based instructional materials in all science disciplines, such as those described in Profiles in Science.

Interested? See the following page for more information about the NACL.
The BSCS National Academy for Curriculum Leadership (NACL) is a rich, in-depth three-year professional development experience for district leadership teams. Through the NACL, school and district leadership teams build on their capacity to design, implement, and sustain an effective high school science education program using inquiry-based instructional materials.

Why the NACL? Because . . .

- Science curriculum matters
- Teaching and learning matter
- Leadership matters
- Professional development matters

Research shows that for students to achieve success in science, they need inquiry-based curriculum aligned with standards and high quality teachers prepared to teach the content.

The NACL works because of its . . .

- Annual events and technical assistance over three years
- Research-based design
- Implementation of standards-based curricula
- Committed leadership teams that represent their districts
- Focus on developing professional learning communities with teachers and administrators working together
- Capacity building and ability of leadership teams to use the NACL processes, tools, and strategies throughout their districts

We invite you to join BSCS as a member of NACL. Together we can improve science education through curriculum leadership.

For more information, please contact us at nacl@bscs.org or call 719.531.5550 ext. 119.
NAACL Model for Curriculum Implementation

Curriculum implementation is a complex process and involves several stages. The NAACL Model for Curriculum Implementation provides a “road map” and some helpful ideas for schools and districts to consider before engaging in the process.

Awareness: Laying the Foundation for Change

In the first stage of the process, a school or district
- builds the awareness that high-quality, inquiry-oriented instructional materials matter in the learning process for students;
- initiates the development of leadership capacity through forming school- and district-based leadership teams; and
- establishes the need for change based on school and district data on student achievement, course enrollment, and teacher capacity.

Selection: Making Evidence-Based Decisions

In the second stage of the process, a school or district
- applies an evidence-based process for evaluating and piloting instructional materials which serves as a professional development strategy prior to implementation;
- develops common understandings among teachers about the characteristics of high-quality, inquiry-oriented instructional materials; and
- builds consensus during the decision-making process by establishing selection criteria based on research and the needs of students and teachers in the district.

Scaling Up: Designing Support for Implementation

In the third stage of the process, a school or district
- designs a transformative professional development program that supports the implementation of high-quality, inquiry-oriented instructional materials;
- incorporates a variety of professional development strategies and evaluation tools; and
- builds the local “improvement infrastructure” that will provide ongoing support within the system for effective implementation.

Sustainability: Monitoring the Capacity for Reform

In the fourth and final stage of the process, a school or district
- improves the capacity of the system to move forward and provide continuous improvement for teaching and learning by developing site-based leadership;
- monitors and adjusts interventions based on data that document student learning, teaching practice, formative classroom assessment, professional development support, and system infrastructure and capacity;
- sustains effective professional development using strategies such as examining student work, collaborative lesson study, and action research; and
- bases professional development on data of teachers’ attitudes about, abilities to use, and understanding of new instructional materials.
Characteristics of Reform-Oriented Instructional Materials

The instructional materials described in this publication were developed to be consistent with the vision of science education suggested in reform documents such as the National Science Education Standards (NRC, 1996), Benchmarks for Scientific Literacy (AAAS, 1993), and Designing Mathematics or Science Curriculum Programs (NRC, 1999). These documents describe high-quality, reform-oriented instructional materials as being standards based, inquiry based, and grounded in contemporary research on learning and teaching. These documents also suggest that quality instructional materials be guided by carefully developed conceptual frameworks and informed by thoughtful and comprehensive field-testing. Since we are suggesting that the instructional materials in this publication look different from traditional materials, it is important for us to first clarify what some of the distinguishing characteristics are before describing the materials themselves.

Reform-oriented instructional materials are standards based in that their science content, instructional approach, and assessment optimize student learning as described in the Standards.

The science content included in the National Science Education Standards (NSES) encompasses important aspects of recent science education reform. Specifically, the NSES suggest that the design of instructional materials reflect a change in emphasis.

Changing Emphases to Promote Learning

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing scientific facts and information</td>
<td>Understanding scientific concepts and developing abilities of inquiry</td>
</tr>
<tr>
<td>Studying subject matter disciplines for their own sake</td>
<td>Learning subject matter disciplines in the context of inquiry, technology, science in personal and social perspectives, and history and nature of science</td>
</tr>
<tr>
<td>Separating science knowledge and science process</td>
<td>Integrating all aspects of science content</td>
</tr>
<tr>
<td>Covering many science concepts</td>
<td>Studying a few fundamental science concepts</td>
</tr>
<tr>
<td>Implementing inquiry as a set of processes</td>
<td>Implementing inquiry as instructional strategies, abilities, and understandings to be learned</td>
</tr>
</tbody>
</table>

Adapted from the National Science Education Standards (NRC, 1996)

In addition, standards-based instructional materials often provide assessments that are consistent with the content in the standards as well as other teacher-support resources. In general, the resources provided in the instructional materials are intended to help teachers use effective teaching strategies to create learning environments conducive to the development of scientific reasoning abilities and a conceptual understanding of the content described in the Standards. The NSES assessment may be different from that of more traditional science instruction.
Standards-Based Teaching and Assessment

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focusing on student acquisition of information</td>
<td>Focusing on student understanding and use of scientific knowledge, ideas, and inquiry processes</td>
</tr>
<tr>
<td>Asking for recitation of acquired knowledge</td>
<td>Providing opportunities for scientific reasoning, discussion, and debate among students</td>
</tr>
<tr>
<td>Assessing scientific knowledge</td>
<td>Assessing scientific understanding and reasoning</td>
</tr>
<tr>
<td>Assessing what is easily measured</td>
<td>Assessing what is most highly valued</td>
</tr>
</tbody>
</table>

Adapted from the *National Science Education Standards* (NRC, 1996)

Reform-oriented instructional materials are inquiry-based and support inquiry as a teaching strategy, as well as the abilities to do and the understandings about science as inquiry.

Inquiry-based instructional materials are designed to support inquiry as a strategy for teaching science concepts. That is, the materials are intended to help teachers as they engage students in the formulation and pursuit of scientifically oriented questions. Using inquiry as a teaching strategy requires substantial changes in instructional emphases.

Changing Emphases to Promote Inquiry

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities that demonstrate and verify science content</td>
<td>Activities that investigate and analyze science questions</td>
</tr>
<tr>
<td>Investigations confined to one class period</td>
<td>Investigations over extended periods of time</td>
</tr>
<tr>
<td>Process skills out of context</td>
<td>Process skills in context</td>
</tr>
<tr>
<td>Getting an answer</td>
<td>Using evidence and strategies for developing or revising an explanation</td>
</tr>
<tr>
<td>Science as exploration and experiment</td>
<td>Science as argument and explanation</td>
</tr>
<tr>
<td>Individuals and groups of students analyzing and synthesizing data without defending a conclusion</td>
<td>Groups of students often analyzing and synthesizing data after defending conclusions</td>
</tr>
<tr>
<td>Doing few investigations in order to leave time to cover large amounts of content</td>
<td>Doing more investigations in order to develop understanding, ability, values of inquiry and knowledge of science content</td>
</tr>
<tr>
<td>Concluding inquires with the result of the experiment</td>
<td>Applying the results of experiments to scientific arguments and explanations</td>
</tr>
<tr>
<td>Private communication of student ideas and conclusions to the teacher</td>
<td>Public communication of student ideas and work to classmates</td>
</tr>
</tbody>
</table>

Adapted from the *National Science Education Standards* (NRC, 1996)
Inquiry-based instructional materials typically encourage students to develop their own methods for collecting, analyzing, and evaluating scientific data. In addition, students using these materials learn by collaboratively developing, justifying, communicating, and evaluating scientific explanations. Inquiry-based instructional materials also prompt students to think about the nature of scientific inquiry, such as how scientists use evidence and logic to establish and revise knowledge. Therefore, in addition to providing discipline-specific science content, inquiry-based instructional materials aim to help students develop both the abilities to do and understandings about scientific inquiry. Examples of abilities and understandings of inquiry are provided in the table below.

Examples of Science as Inquiry from the National Science Education Standards

<table>
<thead>
<tr>
<th>Abilities to do Inquiry</th>
<th>Understandings about Inquiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students identify questions that can be answered through scientific investigations.</td>
<td>Scientists' work involves asking and answering questions and comparing answers with what scientists already know about the world.</td>
</tr>
<tr>
<td>Students design and conduct scientific investigations.</td>
<td>Scientists in different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.</td>
</tr>
<tr>
<td>Students develop descriptions, explanations, predictions, and models based upon evidence.</td>
<td>Scientists construct explanations that emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories.</td>
</tr>
<tr>
<td>Students communicate scientific procedures and explanations.</td>
<td>Two ways that scientists evaluate the explanations proposed by other scientists are by examining evidence and identifying faulty reasoning.</td>
</tr>
</tbody>
</table>

Adapted from the National Science Education Standards (NRC, 1996)

Reform-oriented instructional materials are grounded in contemporary research on learning and teaching.

The book, How People Learn (NRC, 2000), synthesized a large body of research on learners and learning and on teachers and teaching. From this research, several key findings emerged that are summarized in the table below.

Key Findings from How People Learn

- Students come to the classroom with preconceptions about how the world works. If their initial understanding is not engaged, they may fail to grasp the new concepts and information that are taught, or they may learn them for purposes of a test but revert to their preconceptions outside the classroom.

- To develop competence in a science discipline, students must (a) have a deep foundation of usable knowledge, (b) understand facts and ideas in the context of a conceptual framework, and (c) organize knowledge in ways that facilitate retrieval and application.

- A “metacognitive” approach to instruction can help students learn to take control of their own learning by defining learning goals and monitoring their progress in achieving them.

Adapted from How People Learn (NRC, 2000)
When the design of instructional materials is informed by contemporary research findings, such as those discussed in *How People Learn*, the resulting materials tend to share several common characteristics: a) teaching suggestions and numerous student prompts intended to elicit preconceptions and prior knowledge, b) an emphasis on conceptual understanding, higher order thinking, and sensitivity to the processes of knowledge construction, and c) prompts that encourage students to reflect and evaluate their own emerging understanding of science concepts.

Reform-oriented instructional materials are based on a carefully developed conceptual framework.

A conceptual framework describes the outcomes (usually content standards or benchmarks) and performance assessments that guide the development of instructional materials. When instructional materials are based on a carefully developed conceptual framework, the content presented in the materials tends to be comprehensive, consistent, and presented in a manner that is logical, coherent, and developmentally appropriate (for examples of how conceptual frameworks can be used to develop quality instructional materials, see AAAS, 2000; BSCS, 1993).

Reform-oriented instructional materials are revised as a result of thoughtful and comprehensive field testing.

Instructional materials that have been revised as a result of thoughtful and comprehensive field testing are likely to reflect an enhanced understanding of the needs of both students and teachers. Field-tested materials tend to reflect an understanding of a) how diverse learners might achieve the intended outcomes, b) the prior understandings students should have to progress coherently through the content, c) the understandings that teachers will need to possess or develop to facilitate student learning, and d) the resources (for example, time, materials, facilities) necessary to implement the instructional materials.

Summary

The instructional materials described in this publication are designed to be consistent with current science curriculum reform efforts. Specifically, reform-based instructional materials can be characterized by

- aligning closely with standards;
- emphasizing inquiry abilities, understandings, and teaching strategies;
- supporting research-based implications for learning and teaching science;
- presenting content in a coherent way; and
- representing a tested product for students and teachers.

However, since *Profiles in Science*, is not a source of evaluative data or critical analyses of these instructional materials, it is for you to determine the degree to which these instructional materials address and incorporate the characteristics presented.

References

Living By Chemistry

A comprehensive, one-year program designed for all chemistry students—not just the highly motivated ones.

At a Glance

Living By Chemistry (LBC) is the first standards-based, full-year general chemistry curriculum specifically designed to encourage more students with diverse learning styles to learn real chemistry. Developed by Dr. Angelica Stacy at the University of California, *Living By Chemistry* is designed to close the gap between low- and high-achieving students.

Living By Chemistry integrates core chemistry content, process skills, and embedded assessments in meaningful contexts. Student-centered and teacher-facilitated, the curriculum introduces students to the ways chemists think about the world and approach some of the complex problems that face today’s society. Each of the five units consists of a series of real-world investigations. Through these investigations, students develop and test hypotheses to strengthen their conceptual understanding. Together, the five units cover all of the standard material required in a year-long, high school chemistry course. Alternatively, the LBC units may be taught independently as replacement units in an integrated science course.

Living by Chemistry has five modular units that cover a full year of high school chemistry: Alchemy, Smells, Weather, Toxins, and Fire.

Instructional Design

Each unit’s real-world investigations encourage active participation from students. Students consider all ideas and explanations as they continually refine their ideas through activities and discussions. Lessons open with a ChemCatalyst, a question (or questions) designed to elicit students’ ideas about what they will learn. After a teacher-guided discussion, the class moves into the daily Activity, which can be anything from a lab experiment to a card game to a worksheet with review problems. Students often work in groups of two or four. Later on, the Making Sense question and discussion reinforce the

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Level</td>
<td>10, 11, or 12</td>
</tr>
<tr>
<td>Developer</td>
<td>Dr. Angelica Stacy</td>
</tr>
<tr>
<td>Publisher</td>
<td>Key Curriculum Press</td>
</tr>
<tr>
<td>Copyright</td>
<td>2006</td>
</tr>
<tr>
<td>Edition</td>
<td>Preliminary</td>
</tr>
</tbody>
</table>

Contact Information

For review copies or to place an order, contact the publisher.

Developer

Dr. Angelica Stacy
University of California, Berkeley
e-mail astacy@cchem.berkeley.edu
phone 510.642.3450
Web site http://chem.berkeley.edu/people/faculty/stacy/stacy.html

Publisher

Key Curriculum Press
Ladie Malek, Editor
e-mail lmalek@keypress.com
phone 800.995.6284
fax 800.541.2442
Web site www.keypress.com/chemistry
Contents

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alchemy: Atoms, Elements, and Compounds</td>
<td>How is the world around us put together? Students explore the structure of the atom through a historical lens, learning about matter, atoms, the elements, the periodic table, electron configuration, and bonding. They follow in the footsteps of scientists to recreate the modern periodic table and evaluate atomic models in light of experimental evidence.</td>
</tr>
<tr>
<td>Smells: Molecular Structure and Properties</td>
<td>How does the nose know? As students investigate the chemistry of smell, they learn about molecular formulas, covalent bonds, Lewis dot structures, and molecular shape and structure.</td>
</tr>
<tr>
<td>Weather: Gas Laws and Phase Changes</td>
<td>What's the forecast? Asking questions related to weather leads students to an understanding of specific heat capacity and phase changes, and the relationships among pressure, temperature, and volume that lead to the gas laws.</td>
</tr>
<tr>
<td>Toxins: Chemical Reactions and Stoichiometry</td>
<td>How much is too much? Exploring the concept of toxicity, students learn about the qualitative and quantitative aspects of chemical reactions, including balancing equations, stoichiometry, acid-based chemistry, and precipitation reactions.</td>
</tr>
<tr>
<td>Fire: Energy and Thermochemistry</td>
<td>What is the nature of fire? While investigating the intimate connection between change and energy, students explore thermodynamics and activation energy. This unit covers heat transfer, combustion, bond energies, oxidation reduction, and enthalpy changes.</td>
</tr>
</tbody>
</table>

Teachers can rest assured that their students will make progress toward national standards as they gain a deep understanding of chemistry—all through the excitement of a hands-on, inquiry-based approach to chemistry.

Standards Alignment

As a whole, the one-year Living By Chemistry curriculum covers all of the standard material required to meet the Benchmarks for Scientific Literacy (Benchmarks) and the National Science Educational Standards. (NSES). Living By Chemistry is also aligned with the National Physical Science Standards.

Components

Student Text

Each of the five units—Alchemy, Smells, Weather, Toxins, and Fire—has its own student text. Each unit consists of approximately 25 lessons designated for a typical 50-minute class period. One unit provides enough material for six weeks of a year-long course. The lessons are clustered into Investigations. Each Investigation addresses a major field of inquiry within the unit’s broader context.
Teacher’s Edition
Each of the five units has its own teacher’s edition. The *Living By Chemistry* curriculum supports teachers through detailed, daily lesson plans based on a constructivist view of teaching and learning. Lesson plans include a lesson opener, an activity, relevant content including definitions and diagrams, and questions to ask along the way, with sample student answers included. The *Teacher’s Edition* also contains all necessary reproducible pages: worksheets, handouts, transparency masters, and homework assignments.

Laboratory Kits
Each unit has its own lab kit. For teachers’ convenience, lab kits contain all specialty items for each unit, including enough materials for several chemistry classes. Refills and replacement parts are available. Though a laboratory setting is ideal for teaching *Living By Chemistry*, students can complete lab activities in a regular classroom—if they observe safety guidelines and if hot plates, basic lab ware, plastic tubs, and distilled water are available.

The following password-protected teacher resources are features of the *Living By Chemistry* Web-based Resource Center:
- assessment materials,
- answers to homework problems,
- classroom PowerPoint® presentations, and
- links to files containing errata for the early printings of the Preliminary Edition.

Assessment
Living By Chemistry teaches rigorous chemistry content. Students perform lab experiments to form new knowledge, not merely to confirm facts learned in class. Students also sort and organize information, build molecular models, and evaluate the merits and shortcomings of physical models for explaining phenomena. In short, the way students learn chemistry using *Living By Chemistry* mirrors how chemists carry out their work.

Effectiveness of the Curriculum
Living By Chemistry has been developed and tested in diverse chemistry classrooms. It is currently in use in large and small districts in several states as well as in private and charter schools. Our experience so far indicates that all students can be engaged and gain a good understanding of the materials through this guided inquiry approach. Pre- and post-test classrooms show that this innovative approach benefits all students. Research entitled “Living by Chemistry: Evidence of Student Learning Gains” by Jennifer Claesgens, et al. is available from Key Curriculum Press.

Professional Development
Key Curriculum Press offers professional development support for schools implementing *Living By Chemistry*. The publisher offers in-service workshops delivered to your school or district site. A presenter from the publisher’s team of expert consultants will lead sessions that thoroughly model concepts and effective techniques. All sessions have a cooperative orientation and suggest authentic assessment practices that work in the classroom. Activities are hands on, as participants perform investigations and explore Key’s curriculum in a tactile, discovery environment.

Equipment Suppliers
An attempt has been made to provide the specialized items needed for each lab in the *Living By Chemistry* curriculum. However, common lab ware, chemicals, and other easily obtainable items have not been included in these kits. Quantities specified assume a class size of 32 students, and the supplies in each kit are designed to last through 10 classes.