Table of Contents

About This Publication
About This Publication ..5

How to Use *Profiles in Science*
How to Use *Profiles in Science* ..6

NSF-Funded High School Instructional Materials
NSF-Funded High School Instructional Materials ...7

BSCS and Professional Development
BSCS and Professional Development ..9

BSCS National Academy for Curriculum Leadership (NACL)
BSCS National Academy for Curriculum Leadership (NACL) ..10

NACL Model for Curriculum Implementation
NACL Model for Curriculum Implementation ...11

Characteristics of Reform-Oriented Instructional Materials
Characteristics of Reform-Oriented Instructional Materials ...12

Earth Science

Earth System Science in the Community (EarthComm) ..19

Exploring Earth ...23

Life Science

BioComm: Biology in a Community Context ..29

BSCS Biology: An Ecological Approach (Green Version) ..33

BSCS Biology: A Human Approach ...37

BSCS Biology: A Molecular Approach (Blue Version) ...41

Insights in Biology ...45

Physical Science

Active Chemistry ...51

Active Physics ...55

Active Physics CoreSelect ..59

Active Physical Science ...63

ChemDiscovery ...67

Chemistry in the Community (ChemCom) ...70

Comprehensive Conceptual Curriculum for Physics (C³P) ...75

Introductory Physical Science (IPS) ..80

Living by Chemistry ...84
Integrated or Multidisciplinary Science

Astrobiology: An Integrated Science Approach ... 97

It's About Time Integrated Science Curriculums: Coordinated Science for the 21st Century and Integrated Coordinated Science for the 21st Century .. 101

Investigations in Environmental Science .. 106

BSCS Science: An Inquiry Approach ... 110

Ecology: A Systems Approach ... 114

Science and Sustainability (SEPUP) ... 117

Voyages Through Time .. 121

Under Development

Foundation Science .. 129

High School Environmental Science: Understanding Our Changing Earth ... 133

Investigating Astronomy .. 135

Science and Global Issues (SEPUP) .. 138
About This Publication

The BSCS Center for Professional Development compiled Profiles in Science—A Guide to NSF-Funded High School Instructional Materials, second edition, because we believe that the quality of instructional materials matters in the learning process for students and in the teaching process for teachers. As one of our colleagues so aptly expressed:

Before implementing well-designed instructional materials, I thought my role as a teacher was to take the textbook ... and create a curriculum.

Now, I don’t want to be a curriculum writer. I want to teach—to do the art of teaching.

Profiles in Science, second edition, provides updated profiles on instructional materials designed to help high school science teachers in grades 9–12 focus on “the art of teaching” and student learning. The instructional materials described in this document were developed originally with funding from the National Science Foundation (NSF), and thus have undergone field testing and critical review during their development. The developers of these materials based their work on the National Science Education Standards (NRC, 1996) and Benchmarks for Science Literacy (AAAS, 1993); consequently, these materials are truly “standards based.” The profiles were derived from the instructional materials themselves and checked for accuracy by the developers and publishers of the materials. Profiles in Science includes only those materials designed to be semester-long or full-year programs; we did not include NSF-funded modules or units.

Within Profiles in Science, the instructional materials are organized by discipline—earth science, physical science, life science, and integrated science. There is also a section for materials that are currently under development.

The purpose of Profiles in Science is to help those involved in the review and selection of instructional materials for high-school science become familiar with high-quality, research-based instructional materials. This document is intended to be a source of general information about NSF-funded instructional materials; it is not a source of evaluative data or critical analysis of the materials. Each profile includes the following information:

• a brief overview of the primary goals and principles of the materials;
• a listing of the program’s content by module/unit and chapter;
• a description of the instructional approach;
• information about the alignment with national standards;
• a brief description of the various components offered, including kits and equipment suppliers;
• methods used for assessing student learning;
• information about professional development opportunities; and
• contact information for the developer and the publisher of the materials.

The information included in this document was as accurate as possible at the time of publication. Please contact the developer or publisher of the instructional materials for more detailed information and for examination copies of the instructional materials.

References

Profiles in Science is available on the BSCS website as a downloadable pdf file. You may download, at no cost, one or all of the profiles from the BSCS website: www.bscs.org/Profiles.
Why should I consider *Profiles in Science*?

- Are you interested in a standards-based approach to improving student learning in science?
- Are you looking for ways to incorporate research-based instructional strategies, such as science as inquiry, into your science classroom?
- Would you like to create a classroom environment that promotes learning in science for all students?
- Do you need to generate discussion about the process of curriculum selection and implementation in your school or district?

If you answered yes to any of these questions, then *Profiles in Science* can help you find just the right program to meet your needs.

First, *Profiles in Science* offers the initial information you need in one place, which will save you time in searching for developers and publishers of high-quality high school science programs.

Second, *Profiles in Science* allows you to compare programs before you invest the time and effort in ordering and reviewing the instructional materials.

Third, *Profiles in Science* serves as an excellent awareness tool for teachers, administrators, parents, and other stakeholders who might not be familiar with standards- and inquiry-based instructional materials.

How might I use *Profiles in Science*?

- Engage teachers and administrators in a dialogue about the important features of high-quality instructional materials.
- Increase the awareness of NSF-funded high school instructional materials in all science disciplines.
- Compare instructional materials within a specific science discipline.
- Look across science disciplines and consider materials that might complement each other when offered as part of a comprehensive high school science program.
- Generate interest in standards-based instructional materials among colleagues, parents, and the larger community.
- Provide a basis for comparing current high school instructional materials with NSF-funded materials.

However you choose to use *Profiles in Science*, we hope you find the information valuable as you seek to improve the learning and teaching of science. If you decide to contact developers and/or publishers of the instructional materials, please mention that you learned about the materials through *Profiles in Science*, from the BSCS Center for Professional Development.
<table>
<thead>
<tr>
<th>Science Discipline</th>
<th>Page</th>
<th>Instructional Materials</th>
<th>Grade Level</th>
<th>Developer (D)/ Publisher (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Science</td>
<td>19</td>
<td>Earth System Science in the Community (EarthComm)</td>
<td>9–12</td>
<td>American Geological Institute (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Exploring Earth</td>
<td>9–12</td>
<td>TERC (D) McDoougall Littell (P)</td>
</tr>
<tr>
<td>Life Science</td>
<td>29</td>
<td>BioComm: Biology in a Community Context</td>
<td>9–12</td>
<td>Clemson University (D) North Carolina State University (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>BSCS Biology: An Ecological Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>BSCS Biology: A Human Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>BSCS Biology: A Molecular Approach</td>
<td>High School</td>
<td>BSCS (D) Glencoe/McGraw-Hill (P)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Insights in Biology</td>
<td>9–10</td>
<td>EDC (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td>Physical Science</td>
<td>51</td>
<td>Active Chemistry</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>Active Physics (Modules)</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>Active Physics CoreSelect</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>Active Physical Science</td>
<td>9–12</td>
<td>University of Massachusetts (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>ChemDiscovery</td>
<td>10–12</td>
<td>University of Northern Colorado (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Chemistry in the Community</td>
<td>9–12</td>
<td>American Chemical Society (D) W.H. Freeman and Company (P)</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Comprehensive Conceptual Curriculum for Physics (C1P)</td>
<td>9–10</td>
<td>University of Dallas (D) University of Dallas (P)</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Introductory Physical Science (IPS)</td>
<td>8–9</td>
<td>Science Curriculum, Inc. (D) Science Curriculum, Inc. (P)</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>Living By Chemistry</td>
<td>10–12</td>
<td>University of California, Berkeley (D) Key Curriculum Press (P)</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>Minds•On Physics</td>
<td>11–12</td>
<td>University of Massachusetts (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>Physics That Works</td>
<td>11–12</td>
<td>TERC (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td>Science Discipline</td>
<td>Page</td>
<td>Instructional Materials</td>
<td>Grade Level</td>
<td>Developer (D)/ Publisher (P)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Integrated or Multidisciplinary Science</td>
<td>97</td>
<td>Astrobiology: An Integrated Science Approach</td>
<td>9–12</td>
<td>TERC and NASA (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>It’s About Time Integrated Science Curriculums: Coordinated Science for the 21st Century and Integrated Coordinated Science for the 21st Century</td>
<td>9–12</td>
<td>AGI/AAPT/AIP (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Investigations in Environmental Science</td>
<td>9–12</td>
<td>Northwestern University (D) It’s About Time (P)</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>BSCS: Science: An Inquiry Approach</td>
<td>High School</td>
<td>BSCS (D) Kendall/Hunt Publishing Co. (P)</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>Science and Sustainability (SEPUP)</td>
<td>9–12</td>
<td>SEPUP (D) University of California, Berkeley (D) Lab-Aids, Inc. (P)</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>Voyages Through Time</td>
<td>9–10</td>
<td>SETI Institute (D) Learning in Motion (P)</td>
</tr>
<tr>
<td>Under Development</td>
<td>129</td>
<td>Foundation Science</td>
<td>9–12</td>
<td>EDC (D)</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>High School Environmental Science: Understanding Our Changing Earth</td>
<td>9–12</td>
<td>AGI (D)</td>
</tr>
<tr>
<td></td>
<td>135</td>
<td>Investigating Astronomy</td>
<td>9–12</td>
<td>TERC (D)</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>Science and Global Issues (SEPUP)</td>
<td>10–12</td>
<td>SEPUP (D) University of California, Berkeley (D) Lab-Aids, Inc. (P)</td>
</tr>
</tbody>
</table>
In 2008, BSCS will celebrate its fiftieth year of providing leadership in science education. As one of several research-based curriculum studies created in 1958 by the National Science Foundation, BSCS became a leader in the development of innovative curricula that provide opportunities for students to learn science by doing science through inquiry.

Although BSCS has provided professional development for science teachers and other science educators throughout its 50-year history, the organization has recently expanded its mission to provide greater resources and services in professional development through the BSCS Center for Professional Development. BSCS believes, and research supports, that the sustained implementation of standards-based curriculum, especially those that engage students in scientific inquiry, can transform the learning and teaching of science. To be successful, however, curriculum implementation must be supported by high-quality, ongoing professional development.

The BSCS Center for Professional Development provides professional development opportunities that guide districts through a process of effective curriculum reform, from learning about science as inquiry in the classroom to analyzing instructional materials through the AIM process to building department-, school-, and district-wide professional learning communities. The mission of the BSCS Center for Professional Development is to provide learning opportunities for science teachers and other science educators that transform their thinking and practice resulting in more rigorous, inquiry-based learning opportunities for science students.

One of the hallmarks of the BSCS Center for Professional Development is the BSCS National Academy for Curriculum Leadership (NACL). Through the NACL, BSCS helps schools and school districts build leadership capacity to sustain the implementation of standards-based instructional materials in all science disciplines, such as those described in Profiles in Science.

Interested? See the following page for more information about the NACL.
The BSCS National Academy for Curriculum Leadership (NACL) is a rich, in-depth three-year professional development experience for district leadership teams. Through the NACL, school and district leadership teams build on their capacity to design, implement, and sustain an effective high school science education program using inquiry-based instructional materials.

Why the NACL? Because . . .

- Science curriculum matters
- Teaching and learning matter
- Leadership matters
- Professional development matters

Research shows that for students to achieve success in science, they need inquiry-based curriculum aligned with standards and high quality teachers prepared to teach the content.

The NACL works because of its . . .

- Annual events and technical assistance over three years
- Research-based design
- Implementation of standards-based curricula
- Committed leadership teams that represent their districts
- Focus on developing professional learning communities with teachers and administrators working together
- Capacity building and ability of leadership teams to use the NACL processes, tools, and strategies throughout their districts

We invite you to join BSCS as a member of NACL. Together we can improve science education through curriculum leadership.

For more information, please contact us at nacl@bscs.org or call 719.531.5550 ext. 119.
NACL Model for Curriculum Implementation

Curriculum implementation is a complex process and involves several stages. The NACL Model for Curriculum Implementation provides a “road map” and some helpful ideas for schools and districts to consider before engaging in the process.

Awareness: Laying the Foundation for Change

In the first stage of the process, a school or district
• builds the awareness that high-quality, inquiry-oriented instructional materials matter in the learning process for students;
• initiates the development of leadership capacity through forming school- and district-based leadership teams; and
• establishes the need for change based on school and district data on student achievement, course enrollment, and teacher capacity.

Selection: Making Evidence-Based Decisions

In the second stage of the process, a school or district
• applies an evidence-based process for evaluating and piloting instructional materials which serves as a professional development strategy prior to implementation;
• develops common understandings among teachers about the characteristics of high-quality, inquiry-oriented instructional materials; and
• builds consensus during the decision-making process by establishing selection criteria based on research and the needs of students and teachers in the district.

Scaling Up: Designing Support for Implementation

In the third stage of the process, a school or district
• designs a transformative professional development program that supports the implementation of high-quality, inquiry-oriented instructional materials;
• incorporates a variety of professional development strategies and evaluation tools; and
• builds the local “improvement infrastructure” that will provide ongoing support within the system for effective implementation.

Sustainability: Monitoring the Capacity for Reform

In the fourth and final stage of the process, a school or district
• improves the capacity of the system to move forward and provide continuous improvement for teaching and learning by developing site-based leadership;
• monitors and adjusts interventions based on data that document student learning, teaching practice, formative classroom assessment, professional development support, and system infrastructure and capacity;
• sustains effective professional development using strategies such as examining student work, collaborative lesson study, and action research; and
• bases professional development on data of teachers' attitudes about, abilities to use, and understanding of new instructional materials.
Characteristics of Reform-Oriented Instructional Materials

The instructional materials described in this publication were developed to be consistent with the vision of science education suggested in reform documents such as the *National Science Education Standards* (NRC, 1996), *Benchmarks for Scientific Literacy* (AAAS, 1993), and *Designing Mathematics or Science Curriculum Programs* (NRC, 1999). These documents describe high-quality, reform-oriented instructional materials as being standards based, inquiry based, and grounded in contemporary research on learning and teaching. These documents also suggest that quality instructional materials be guided by carefully developed conceptual frameworks and informed by thoughtful and comprehensive field-testing. Since we are suggesting that the instructional materials in this publication look different from traditional materials, it is important for us to first clarify what some of the distinguishing characteristics are before describing the materials themselves.

Reform-oriented instructional materials are standards based in that their science content, instructional approach, and assessment optimize student learning as described in the Standards.

The science content included in the *National Science Education Standards* (NSES) encompasses important aspects of recent science education reform. Specifically, the NSES suggest that the design of instructional materials reflect a change in emphasis.

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing scientific facts and information</td>
<td>Understanding scientific concepts and developing abilities of inquiry</td>
</tr>
<tr>
<td>Studying subject matter disciplines for their own sake</td>
<td>Learning subject matter disciplines in the context of inquiry, technology, science in personal and social perspectives, and history and nature of science</td>
</tr>
<tr>
<td>Separating science knowledge and science process</td>
<td>Integrating all aspects of science content</td>
</tr>
<tr>
<td>Covering many science concepts</td>
<td>Studying a few fundamental science concepts</td>
</tr>
<tr>
<td>Implementing inquiry as a set of processes</td>
<td>Implementing inquiry as instructional strategies, abilities, and understandings to be learned</td>
</tr>
</tbody>
</table>

In addition, standards-based instructional materials often provide assessments that are consistent with the content in the standards as well as other teacher-support resources. In general, the resources provided in the instructional materials are intended to help teachers use effective teaching strategies to create learning environments conducive to the development of scientific reasoning abilities and a conceptual understanding of the content described in the Standards. The NSES assessment may be different from that of more traditional science instruction.
Standards-Based Teaching and Assessment

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focusing on student acquisition of information</td>
<td>Focusing on student understanding and use of scientific knowledge, ideas, and inquiry processes</td>
</tr>
<tr>
<td>Asking for recitation of acquired knowledge</td>
<td>Providing opportunities for scientific reasoning, discussion, and debate among students</td>
</tr>
<tr>
<td>Assessing scientific knowledge</td>
<td>Assessing scientific understanding and reasoning</td>
</tr>
<tr>
<td>Assessing what is easily measured</td>
<td>Assessing what is most highly valued</td>
</tr>
</tbody>
</table>

Adapted from the *National Science Education Standards* (NRC, 1996)

Reform-oriented instructional materials are inquiry-based and support inquiry as a teaching strategy, as well as the abilities to do and the understandings about science as inquiry.

Inquiry-based instructional materials are designed to support inquiry as a strategy for teaching science concepts. That is, the materials are intended to help teachers as they engage students in the formulation and pursuit of scientifically oriented questions. Using inquiry as a teaching strategy requires substantial changes in instructional emphases.

Changing Emphases to Promote Inquiry

<table>
<thead>
<tr>
<th>Less Emphasis On</th>
<th>More Emphasis On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities that demonstrate and verify science content</td>
<td>Activities that investigate and analyze science questions</td>
</tr>
<tr>
<td>Investigations confined to one class period</td>
<td>Investigations over extended periods of time</td>
</tr>
<tr>
<td>Process skills out of context</td>
<td>Process skills in context</td>
</tr>
<tr>
<td>Getting an answer</td>
<td>Using evidence and strategies for developing or revising an explanation</td>
</tr>
<tr>
<td>Science as exploration and experiment</td>
<td>Science as argument and explanation</td>
</tr>
<tr>
<td>Individuals and groups of students analyzing and synthesizing data without defending a conclusion</td>
<td>Groups of students often analyzing and synthesizing data after defending conclusions</td>
</tr>
<tr>
<td>Doing few investigations in order to leave time to cover large amounts of content</td>
<td>Doing more investigations in order to develop understanding, ability, values of inquiry and knowledge of science content</td>
</tr>
<tr>
<td>Concluding inquires with the result of the experiment</td>
<td>Applying the results of experiments to scientific arguments and explanations</td>
</tr>
<tr>
<td>Private communication of student ideas and conclusions to the teacher</td>
<td>Public communication of student ideas and work to classmates</td>
</tr>
</tbody>
</table>

Adapted from the *National Science Education Standards* (NRC, 1996)
Inquiry-based instructional materials typically encourage students to develop their own methods for collecting, analyzing, and evaluating scientific data. In addition, students using these materials learn by collaboratively developing, justifying, communicating, and evaluating scientific explanations. Inquiry-based instructional materials also prompt students to think about the nature of scientific inquiry, such as how scientists use evidence and logic to establish and revise knowledge. Therefore, in addition to providing discipline-specific science content, inquiry-based instructional materials aim to help students develop both the abilities to do inquiry and understandings about it. Examples of abilities and understandings of inquiry are provided in the table below.

Examples of Science as Inquiry from the National Science Education Standards

<table>
<thead>
<tr>
<th>Abilities to do Inquiry</th>
<th>Understandings about Inquiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students identify questions that can be answered through scientific investigations.</td>
<td>Scientists’ work involves asking and answering questions and comparing answers with what scientists already know about the world.</td>
</tr>
<tr>
<td>Students design and conduct scientific investigations.</td>
<td>Scientists in different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.</td>
</tr>
<tr>
<td>Students develop descriptions, explanations, predictions, and models based upon evidence.</td>
<td>Scientists construct explanations that emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories.</td>
</tr>
<tr>
<td>Students communicate scientific procedures and explanations.</td>
<td>Two ways that scientists evaluate the explanations proposed by other scientists are by examining evidence and identifying faulty reasoning.</td>
</tr>
</tbody>
</table>

Adapted from the National Science Education Standards (NRC, 1996)

Reform-oriented instructional materials are grounded in contemporary research on learning and teaching.

The book, How People Learn (NRC, 2000), synthesized a large body of research on learners and learning and on teachers and teaching. From this research, several key findings emerged that are summarized in the table below.

Key Findings from How People Learn

- Students come to the classroom with preconceptions about how the world works. If their initial understanding is not engaged, they may fail to grasp the new concepts and information that are taught, or they may learn them for purposes of a test but revert to their preconceptions outside the classroom.

- To develop competence in a science discipline, students must (a) have a deep foundation of usable knowledge, (b) understand facts and ideas in the context of a conceptual framework, and (c) organize knowledge in ways that facilitate retrieval and application.

- A “metacognitive” approach to instruction can help students learn to take control of their own learning by defining learning goals and monitoring their progress in achieving them.

Adapted from How People Learn (NRC, 2000)
When the design of instructional materials is informed by contemporary research findings, such as those discussed in *How People Learn*, the resulting materials tend to share several common characteristics: a) teaching suggestions and numerous student prompts intended to elicit preconceptions and prior knowledge, b) an emphasis on conceptual understanding, higher order thinking, and sensitivity to the processes of knowledge construction, and c) prompts that encourage students to reflect and evaluate their own emerging understanding of science concepts.

Reform-oriented instructional materials are based on a carefully developed conceptual framework.

A conceptual framework describes the outcomes (usually content standards or benchmarks) and performance assessments that guide the development of instructional materials. When instructional materials are based on a carefully developed conceptual framework, the content presented in the materials tends to be comprehensive, consistent, and presented in a manner that is logical, coherent, and developmentally appropriate (for examples of how conceptual frameworks can be used to develop quality instructional materials, see AAAS, 2000; BSCS, 1993).

Reform-oriented instructional materials are revised as a result of thoughtful and comprehensive field testing.

Instructional materials that have been revised as a result of thoughtful and comprehensive field testing are likely to reflect an enhanced understanding of the needs of both students and teachers. Field-tested materials tend to reflect an understanding of a) how diverse learners might achieve the intended outcomes, b) the prior understandings students should have to progress coherently through the content, c) the understandings that teachers will need to possess or develop to facilitate student learning, and d) the resources (for example, time, materials, facilities) necessary to implement the instructional materials.

Summary

The instructional materials described in this publication are designed to be consistent with current science curriculum reform efforts. Specifically, reform-based instructional materials can be characterized by

- presenting content in a coherent way; and
- representing a tested product for students and teachers.

However, since *Profiles in Science*, is not a source of evaluative data or critical analyses of these instructional materials, it is for you to determine the degree to which these instructional materials address and incorporate the characteristics presented.

References

BSCS Biology: An Ecological Approach (Green Version)

A first-year biology program that integrates major concepts of biology into an ecological framework.

At a Glance

BSCS Biology: An Ecological Approach (Green Version) is an introductory, standards-based program for high school biology students. BSCS Green Version offers a student-centered approach to learning that is designed to encourage teaching for conceptual understanding in an inquiry-based learning environment. With ecology as a central focus, Green Version offers an array of experience-based instructional activities including laboratory investigations, projects, interactive readings, and inquiry-oriented discussions.

BSCS Biology: An Ecological Approach is divided into five units that are unified by ten themes in biology: 1) evolution; 2) diversity of type and unity of pattern; 3) genetic continuity of life; 4) the complementary nature of organism and environment; 5) biological roots of behavior; 6) complementary nature of structure and function; 7) regulation and homeostasis; 8) science as inquiry; 9) the history of biological concepts; and 10) science and society.

Instructional Design

The central instructional approach of BSCS Green Version is inquiry, with teachers assuming the role of a guide to facilitate student learning. For students, the emphasis of the program is on the process of investigation rather than the memorization of facts. Students are encouraged to question and seek answers to their questions in a collaborative learning environment. The learning experiences include laboratory investigations, interactive readings, long-term projects, and inquiry-oriented discussions.

Contact Information

For review copies or to place an order, contact the publisher.

Discipline	Biology
Grade Level	High School
Developer	BSCS
Publisher	Kendall/Hunt Publishing Company
Copyright	2006
Edition	Tenth

Developer

Biological Sciences Curriculum Study (BSCS)
Pam Van Scotter, Director
The BSCS Center for Curriculum Development
e-mail pvanscotter@bscs.org
phone 719.531.5550
fax 719.531.9104
Web site www.bscs.org

Publisher

Kendall/Hunt Publishing Company
Troy Jacobsen, Science Editor
e-mail tjacobse@kendallhunt.com
phone 800.542.6657 x1052
fax 800.228.0720
Web site www.kendallhunt.com
Contents

<table>
<thead>
<tr>
<th>Units</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>The World of Life</td>
<td>The Web of Life</td>
</tr>
<tr>
<td></td>
<td>Populations</td>
</tr>
<tr>
<td></td>
<td>Communities and Ecosystems</td>
</tr>
<tr>
<td></td>
<td>Matter and Energy in the Web Of Life</td>
</tr>
<tr>
<td>Continuity of Life</td>
<td>The Cell</td>
</tr>
<tr>
<td></td>
<td>Continuity Through Reproduction</td>
</tr>
<tr>
<td></td>
<td>Continuity Through Development</td>
</tr>
<tr>
<td></td>
<td>Heredity and Genetic Variation</td>
</tr>
<tr>
<td></td>
<td>Evolution: Patterns and Diversity</td>
</tr>
<tr>
<td>Diversity and Adaptation in</td>
<td>Ordering Life in the Biosphere</td>
</tr>
<tr>
<td>the Biosphere</td>
<td>Prokaryotes and Viruses</td>
</tr>
<tr>
<td></td>
<td>Eukaryotes: Protists and Fungi</td>
</tr>
<tr>
<td></td>
<td>Eukaryotes: Plants</td>
</tr>
<tr>
<td></td>
<td>Eukaryotes: Animals</td>
</tr>
<tr>
<td>Functioning Organisms</td>
<td>The Human Animal: Food and Energy</td>
</tr>
<tr>
<td></td>
<td>The Human: Maintenance of Internal Environment</td>
</tr>
<tr>
<td></td>
<td>The Human Animal: Coordination</td>
</tr>
<tr>
<td></td>
<td>The Flowering Plant: Form and Function</td>
</tr>
<tr>
<td></td>
<td>The Flowering Plant: Maintenance and Coordination</td>
</tr>
<tr>
<td>Patterns in the Biosphere</td>
<td>Behavior, Selection, and Survival</td>
</tr>
<tr>
<td></td>
<td>Ecosystems of the Past</td>
</tr>
<tr>
<td></td>
<td>Biomes around the World</td>
</tr>
<tr>
<td></td>
<td>Aquatic Ecosystems</td>
</tr>
<tr>
<td></td>
<td>Managing Human-Affected Ecosystems</td>
</tr>
</tbody>
</table>

Standards Alignment

BSCS Biology: An Ecological Approach, 10th edition, is correlated with both the *Benchmarks for Science Literacy* (*Benchmarks*) and the *National Science Education Standards* (NSES). A chart with this information is included on the *Teacher’s Resource CD* (TRCD).

Components

Student Text

The *Student Text* is organized in five units, each containing four or five chapters that provide a complete program for introductory biology. Each chapter consists of the following features:

- **Guideposts**—questions designed to arouse student interest and curiosity and help identify important ideas.
- **Concept Review**—questions at the end of each major heading that re-examine key ideas.
- **Biology Today**—information on careers in biology and the latest research in biology and technology.
- **NSTA sciLinks**—students are directed to these web-based resources that are previewed and maintained by NSTA.
• **Investigations**—labs that are integrated into each chapter to engage student interest through discovery or to verify and extend the material being studied.

• **Chapter Summary**—a review of the major concepts presented in each chapter.

• **Application Questions**—questions that test students’ ability to synthesize the knowledge they have gained from studying the chapter.

• **Problems**—opportunities for students to pursue creativity, research, or independent study.

• **Appendices**—safety guidelines, general and specific lab procedures, tables and charts, and A Catalog of Living Things.

• **Glossary**—definitions of important terms used in the book.

• **Index**—guide to all the information in the book.

• **The Commons: An Environmental Dilemma**—an award winning, interactive CD-ROM developed by BSCS, inviting students to apply scientific knowledge to the issues posed by shared resources and human population growth.

Teacher’s Edition

The Teacher’s Edition includes all student materials as well as a variety of philosophical, instructional, and procedural aids. It includes the following features:

• **Teaching with Green Version**—a discussion of the instructional theory on which *BSCS Green Version* is based and suggestions for scheduling lessons throughout the year.

• **Teaching Strategies by Chapter**—an in-depth look at each chapter and suggestions of ways to interweave the investigations with the readings.

• **Knowledge Check**—questions that probe students’ grasp of the concepts covered and determines which concepts need special attention.

• **Guideposts**—interactive questions to begin the investigative thought processes.

• **Special Icons**—a way to highlight safety precautions and important teaching points.

• **Discussions Sections**—a description of what students should be looking for while performing investigations.

Teacher’s Resource CD (TRCD)

• **Curriculum and Laboratory Resources**—in-depth software and media listings along with a master materials list for all investigations.

• **Chapter Supplements**—extra Applications and Problems questions, and several investigations.

• **Supplementary Topics**—expansions of material already mentioned in the text with in-depth essays.

• **Supplementary Investigations**—additional investigations that can be used with, or in addition to, investigations in the student textbook. Also included are master materials lists and safety information.

• **The Commons**—background materials and teacher notes for *The Commons: An Environmental Dilemma*, an interactive CD-ROM developed by BSCS.

• **Invitations to Enquiry**—activities designed to acquaint students with the processes of science.

• **Blackline Masters**—resources that enable the teacher to create teaching transparencies with reproduction of text art and diagrams.

• **Benchmarks and NSES Correlations**—a tabulation and explanation of how text aligns with both sets of guidelines.

• **Teacher’s Edition of the Student Study Guide.**

Student Study Guide

The Student Study Guide is designed to enhance students’ communication skills, science skills, and general cognitive skills. The companion Teacher’s Edition (on the TRCD) serves as a source of instructional ideas for the teacher.

Transparencies

BSCS Green Version includes 50 full-color figures and technical art that enhance visual learning.

Computer Test Bank

The computer test bank is supported by a user-friendly program that includes graphics and a user’s manual. The
test items are mostly multiple choice, but essay questions have been added. Approximately half of the items are application/inquiry-level questions that draw upon students' higher-level thinking skills. For more information, contact the publisher.

Assessment

Evaluation data of the students can be collected in a variety of ways. The computer test bank for BSCS Green Version offers prepared test items that correlate to the chapters. Answering “Applications and Problems” questions located near the end of each chapter also serve as student assessment.

Professional Development

Kendall/Hunt Publishing Company offers professional development workshops for school districts that purchase the program. These workshops are structured to meet the needs of each district. Contact the publisher for more information.

Equipment Suppliers

The equipment supplier for this program is Kendall/Hunt Publishing.