Transforming science education through research-driven innovation



Making Computing Visible & Tangible


The Making Computing Visible & Tangible (MCVT) project is exploring how a paper-based, physical computing kit can empower youths’ and educators’ learning and engagement with key computing concepts and practices.

Project Inspiration

Traditional approaches to teaching and learning about computer science continue to present barriers for participation, especially for youth and students from traditionally underrepresented backgrounds. 

At BSCS Science Learning, we aim to design opportunities that break down these barriers. 

To do so, we build on findings from physical computing materials to engage learners in making and programming personally relevant, hands-on projects. These types of constructive making activities expand the breadth and reach of computing by using familiar materials and appealing to new communities who share their interests, resources, practices, and knowledge with each other in social interactions. 

We believe that young people need to be able to see and more deeply interrogate multiple systems–social, material, and computational–upon which powerful computational tools rely. This could enable learners to gain a greater sense of possibility, a sense that they can modify the tools and cultures of computing to better fit their own purposes, values, and identities. 

To accomplish this, we purposefully make visible and modifiable selected components of normally opaque, or “black boxed”, computational technologies so that all learners can investigate, understand, and appreciate their parts, purposes, and complexities. 

Early prototype of the MCVT cards

Figure: Early prototype of the MCVT cards
Photo Credit: HyunJoo Oh

About the Project

In this project, “making computing visible and tangible” refers to a design stance that values the beauty and transparency of seeing the inner workings of technical and computational systems, including electrical and mechanical systems. Designed in partnership with the CoDE Craft Group at Georgia Tech, the paper-based, physical computing kits scaffold youths and educators through using everyday materials to flexibly build onto different cards that involve key computational practices, such as inputs and outputs, logic statements, and sensing and actuating. 

The kits “unblackbox” normally opaque computational processes, while enabling 

  • easy access and exploration through tinkering (in contrast to learning code syntax or programming languages) and
  • interchangeability for educators and youths to use materials they have on hand to build onto the original kit design. 

A key design feature of the MCVT kits is to enable space for personal stories and expertise through project design prompts that invite self-expression, such as “What lights you up?” and “Choose a place, a word, and/or an object that has meaning and importance to you.”

Paper cut with a section cut out and a piece of paper with a drawing of a man on it
Piece of paper folded into a cylinder with a drawing of a black cat with 'HOPE' written below it, and a drawing of a castle at the bottom
Piece of paper with copper tape to make a circuit

Figure: Projects created using MCVT cards by youth and educators
Photo Credit: Sherry Hsi & Sarah Jenkins

Over the past 2.5 years, the MCVT project has involved iterative co-design cycles of enactment by educators and youths from traditionally underrepresented backgrounds, positioning them as experts to provide feedback that then informed the redesign of the kit components. In collaborative design, participants, including young people, can gain direct experience in design practices, design critiques to shape technology futures, and experience connecting to the tools, materials, and representations of computing systems under development.

Along the way, we are documenting how interacting with the MCVT tools and culturally relevant design activities influences educators’ and youths’ 

  • learning about computing concepts and practices,
  • identification with and relationship to computer science as a discipline, and
  • views on how to leverage those computational practices for their own pursuits and possible futures. 

This research project has resulted in the MCVT kit of materials and parts to support inclusive computing education. The kit is now available, fully open-access.

What’s Next

By 2024, the site will feature accompanying lesson plans designed by participating teachers. We are committed to share these important, co-designed materials and resources at a broader scale and to contribute to new design knowledge about inclusive and responsive designs for computing education.

Making Waves with Radio is a suite of museum activities, apps, and camp curricula for engaging educators, youth, and public audiences about radio technologies.

Project Inspiration

Energy waves operating at radio frequencies surround us at all times. Engineers design devices and systems to harness this energy and provide wireless communications that allow us to send data and messages across the world at the speed of light. That’s why we can use cell phones, make contactless payments, monitor weather conditions, and control air traffic. 

Radio technologies are undergoing rapid technological changes and are highly relevant to our advancing, 21st-century society. Still, many people are unfamiliar with how radio carries our information and how we can participate in its development, governance, and use. 

At BSCS Science Learning, we are working with informal educators to change that. 

Informal educators working in museums, out-of-school programs, and other informal settings across the nation are uniquely positioned to engage and educate public and youth audiences about complex topics. And with the right tools and resources, these educators can make a significant impact.

About the Project

The Making Waves with Radio project aims to promote awareness and understanding of radio frequency technologies and wireless technologies across informal learning environments. 

BSCS is partnering with STEM professionals across academic and informal education to create a suite of resources, including digital apps, craft-based activities, and mobile and online professional learning. These resources will be inclusive, accessible, and adaptable to engage youth and the public about radio frequency communications.  

BSCS is co-designing each of these resources with our partners: Georgia Tech, the Children’s Creativity Museum, Museum of Life and Science, Sciencenter, Teknikio, Global Alliance of Community Science Workshops, and NISE Network museum partners.

The project features a rigorous and multipronged research and development approach that builds on prior studies about Learning sciences to advance a learning-design framework for nimble, mobile, informal education while incorporating the best aspects of hands-on learning. We are testing two related hypotheses: 

  1. A mobile strategy can be effective for supporting just-in-time, informal education of a highly technical, scientific topic. 
  2. A mobile suite of resources, including professional learning, can be used to raise greater awareness and teach informal educators, youth, and the general public about radio frequency communications. 

Materials from this project are informed by a front-end evaluation study of educators and public audiences; formative testing and co-design sessions at partner and community sites; and a summative evaluation to be conducted at museums, science festivals, summer camps, and community science workshops. Data sources include pre- and post-surveys, interviews, and focus groups with a wide array of educators and learners. 

All materials and reports will be released under an open-source license and will be free to use.

Related Resources

Making Waves: Teaching Radio to Youth and the Public (https://bscs.org/news/making-waves-teaching-radio-to-youth-and-the-public/)

Keeping Voices in the Room: Values Clarification in Codesign for Equitable Science and Technology Education (https://onlinelibrary.wiley.com/doi/full/10.1111/cura.12529)