Transforming science education through research-driven innovation



Making Waves: Teaching Radio to Youth and the Public

April 9, 2021


Dr. Sherry Hsi joined BSCS Science Learning last fall as a Principal Scientist. She is a distinguished researcher in informal learning environments, engineering education, and educational technology—areas that are important to BSCS’s mission and will allow us to expand our impact on science learning.

Hsi is currently leading the Making Waves* project. Read her article below for insight on this work.

Radio frequencies enable us to use our cell phones every day to communicate to people around the world. Radio frequencies are also enabling our wireless laptops, remote-control car locks, Bluetooth air pods, and Internet-of-Things devices to function. In society at large, radio is used for air traffic control, spacecraft communications, and astronomical research. Because there is more and more demand for utilizing the radio spectrum, the crowded airspace around us is getting even more crowded with radio signals.

As a national resource, how does society decide who owns and responsibly manages our airspace of invisible yet important radio frequency communications?

Five big ideas about radio

A team at BSCS Science Learning launched the Making Waves project in fall 2020 to improve public awareness, science understanding, and societal impacts of radio frequency communications and wireless technologies. Our multidisciplinary team is developing a suite of mobile professional learning resources for informal educators to support learning in museums and youth programs.

“Five big ideas” about radio frequency communications are guiding the development of a suite of informal learning resources. We are drawing concept sketches of floor demonstrations, mobile apps, and professional learning supports while concurrently developing an equity-oriented, culturally responsive co-design process for instructional materials development. Data gathered from co-design sessions with different groups of informal educators as well as from interviews and a front-end survey with youth, families, educators, and the public will ensure that we include the voices of learners and educators across the communities these resources will support.

With science centers and museums carefully reopening to the public during the second year of COVID-19, our teams are eager to get our prototypes into the hands of users for testing. The invention and continuous innovation of radio frequency communications are a science and engineering marvel. Because these communication technologies fundamentally shape our lives and communities, we want to support others in effectively teaching and learning about them.

Learning about Radio Frequency Communication

The history of radio

In science class, students commonly learn that air is a mixture of different gases. However, viewed from an engineering perspective, air is not only a gas but a medium and the space around us where we find the electromagnetic spectrum. We are immersed in invisible radio waves that inhabit, spread, reflect, and bounce around like multiple virtual Ping-Pong balls, around buildings, up to orbiting satellites, around the world and back thanks to technological innovation.

On the electromagnetic spectrum, which includes microwaves, visible light, and x-rays, radio waves have the longest wavelength and as a result can travel long distances with the lowest energy. Cell phones and other wireless mobile devices use these waves to carry our information from one place to another. Electric charges are accelerated back and forth along a physical wire using a system of a power source, antennas, and some electronics to create a standing waveform. By manipulating the wave’s amplitude, wavelength, and frequency, a cell phone encodes, encrypts, and sends data, like my voice, airborne from Berkeley to Colorado Springs. Simultaneously, my phone is receiving and decoding signals, allowing me to hear a colleague’s voice (often along with a funny digital picture of a recent meal or pet).

There are no crossed wires in mobile communications! This is not a coincidence but an incredible feat of design and engineering involving planning, ingenuity, and cooperation to build a national and international telecommunications system.


*The Making Waves project is funded by the National Science Foundation’s Advancing Informal Science Learning (AISL) and Innovative Technology Experiences for Students and Teachers (ITEST) program. Partners include the NISE Network (nisenet.org), Georgia Institute of Technology, Children’s Creativity Museum (San Francisco, CA), Knight-Williams Communications, Sciencenter (Ithaca, NY), Museum of Nature and Science (Durham, NC), The Concord Consortium, UC Santa Cruz Girls in Engineering & MESA program, and the Global Alliance for Community Science Workshops (Watsonville, CA).